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Approximating the Coulomb self-energy of a charge distribution within a three-
dimensional domain and the mutual Coulomb energy of two charge distributions
often constitutes a computational bottleneck in the simulation of physical systems.
The present article reports on a recently developed computational technique aimed
at the numerical evaluation of the six-dimensional integrals arising from Coulomb
interactions. Techniques from integral geometry are used to show a reduction of
the domain from six-dimensional to two-dimensional. In the process analytic sin-
gularities due to Coulomb’s law are eliminated. Experimental results on the self-
energy of a charged cube show that the proposed method converges rapidly and is
competitive with methods proposed in the literature for similar integration prob-
lems. (© 1998 Academic Press

1. INTRODUCTION

1.1. The Problem

Suppose we are given a dom&c R in 3-space and a volume charge density functic
p defined inD; the electrostatic or Coulomb self-energy Bfusing the Gaussian unit
system is given by the following six-dimensional integral:
1 p(P1)p(P2)
Ep== / — = dpdp,. 1

P 2 p1,p2€D |pl_p2| PP ( )
If we are given two domaind); and D, in 3-space, endowed respectively with volum
charge density functions; andp,, the mutual Coulomb energy is given by the followin

1 Corresponding author.
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six-dimensional integral:

Eo, 0, = / / pl(pl)_,OZ(pZ) dpydps. @)
p1eDy J p2eD; [P1— P2l

Integrals of this form are found often in physics and chemistry but rarely are closed-fo
solutions known (however, a notable exception is reported in the next subsection). Nume
evaluation of integrals (1) and (2) encounters two sources of inefficiency. First of all the
integrals are six-dimensional, thus requiring a large number of cubature points. As a |
of thumb, the approximation achieved witlquadrature points in dimension 1, is reachec
with n® cubature points in dimension 6, when product quadrature rules are used. Sec
the integrand function has a singularity whenever the two pgnénd p, coincide, which
happens in integral (1) and may happen in integral (2), as we do not rule out domains
share boundary points. The presence of singularities induces slow convergence in star
numerical integration methods.

In this paper we show that for a vast class of domains and density functions it is poss
to transform integrals (1) and (2) so that the kernel is regular and the dimension of
integration domain is reduced to 2, thus making numerical integration an appealing opt
Before we say more about our results we comment on two application areas where ¢
results may be beneficial.

1.2. Applications

1.2.1. Molecular computations.The well-known electron—electron repulsion integral
(ERI) is

Gt | ) / Bu(PUS. PV (P2)0 (PD) @ -

p1, p2€R® [P1— P2l

whereg¢,,, ¢, ¢,, andg, are one-electron orbitals. Such integrals are found in namny
initio theories and methods, Hartree—Fock theory and density-functional theory [1, 2],
mention a couple of the most important ones. The ERI has the same mathematical stru
of the energy integral (2) when we consider as domBipand D, the whole space and we
interpretg, ¢, (resp.¢;¢.) as the function associated with the first (resp. second) domai

One-electron basis functions are then usually expanded as a linear combination of p
itive basis functions. Gaussian type functions [3] have become one of the most pop
choices for the basis expansion of atomic orbitals since the pioneering work of Boys
showing that the ERI, as well as other relevant integrals, have an analytic exact solu
for such a class of functions. These analytic solutions are usually obtained through
evaluation of recursive schemes [5-7], or through the so-called Rys polynomial techni
[8-10].

Boerrigter, te Velde, and Bearends [11] note that a large number of Gaussian-type ft
tions might be needed to tightly approximate one-electron orbitals, thus making the ra
growth of the number of integrals to be evaluated a particularly vexing problem. Other ty,
of basis functions (e.g., Slater-type orbitals, plane weaves, Bessel functions) may lea
shorter expansions, but suffer from the difficulty of analytic or numerical integration.
[11, 12] a cellular approach is used: the space is partitioned in Voronoi polyhedra, wh
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a Voronoi polyhedron is the portion of space closer to a nucleus than any other. Then
polyhedron is split into an inner sphere centered on the atom center and a set of trun
pyramids. Specialized numerical techniques are then used in these two types of don
Numerical results reported in [11] compare favorably with previously known techniqu
notably those based on Diophantine integration [13, 14]. Such a method is suitable
computing particle-distribution interaction integrals, since special attention is paid to
gularities at the nuclei; however, such a technique does not seem to address more g
(six-dimensional) integrals (1) and (2).

A second numerical technique is advocated by Becke [15] (see also [16-18]). In |
integral (3) is split into an external part, corresponding to integratiaipinand an internal
part, corresponding to integrationdlp, for a fixed p,. The internal integral is the potential
of the charge distributio, ¢, at the fixed pointp,. Such a potential is calculated by
considering the equivalent Poisson equation and a finite-difference solution approach
external integral is then attacked with a technigue in [15]. Starting from Voronoi cells ba
on atomic nuclei Becke defines suitable weighting functions that are continuous, clos
the unity within a Voronoi cell, and close to zero outside. Using these weight functions
arbitrary three-dimensional integral can be reduced to a sum of atom-centered integral
which product quadrature rules in spherical coordinates are used.

Further refinements and tuning of the approaches in [11, 15] for three-dimensiona
tegrals are investigated in [19]. The approach in [20, 21] to the evaluation of integral
potential theory has some high level similarity with that of Becke, although in a differe
context.

1.2.2. Energy calculations for crystalsin several models of matter we can distinguisl
a discrete component made of charged point particles and a continuous component
of continuous distributions of charge (see, e.g., [22]). Thus formally we can split the t
electrostatic energy into the contribution of the point charges, the mutual energy due t
interaction of point charges with the distribution of charge, and finally, the contribution
the distribution of charge. The first contribution is expressed formally as a double summz
of the Coulomb energy over pairs of particles. Several techniques, ranging framfady
methods to periodic boundary conditions (Madelung sums [23], Ewald summation [2
are available to speed up the computation. The second contribution involves a sum of t
dimensional integrals. Numerical techniques for such integrals have been mentioned ¢
in the context of DFT calculations. In the special case of uniform distribution in a cube sc
analytic solutions are also known [25, 26]. For the energy of distribution of charges, wt
are represented by six-dimensional integrals of type (1) or (2), save the above-menti
references, there is a notable lack of specific techniques available.

Inthe study of crystal or quasicrystal lattices it is customary to associate each particle
a convex polyhedron containing the particle. Besides Voronoi cells, space filling polyhe
are also used [27, 28]. Moreover, we may want to associate a charge distribution to
polyhedron (e.g., to maintain electroneutrality). Although a constant distribution of cha
is a reasonable first choice, more precise models might include nonconstant distribu
to fit known data (either experimental or obtained through auxiliary computations). Tt
energy calculations for regular crystal lattices (not necessarily with cubic symmetry)
even irregular lattices, do conceivably benefit from general techniques for computing
dimensional energy integrals over convex polyhedral domains with nonconstant den:
of charge.
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1.3. Main Results, Experiments, and Comparisons

The main contribution of this paper is a general efficient method to compute integrals
and (2) when:

e The domainD (resp.D; andD,) is a compact convex polyhedron.
e The densityp (resp.p1 andpy) is a polynomial function in Cartesian coordinates.

As we noted above convex polyhedral domains arise naturally in methods basec
Voronoi tassellations or on space-filling polyhedra. Although most popular basis functic
are not polynomial (usually exponential terms are present), piecewise polynomial functi
may be used to fit any given function in three-dimensional space.

The proposed method has been implemented and tested on approximating the self-el
of a uniformly charged cube (a more detailed description is in Section 5). A reference ve
is obtained by a high-order Gaussian integration of the formula in [26] for the potential
a cube at a point. As a focus for comparison we concentrate on the following experime
result: using 1000 Gaussian points our method attains an absolute error betw2end 0
10-%, without exploiting the symmetries of the cube. If we exploit explicitly symmetrie:
of the cube for the same number of points the absolute error of our method is in the ra
between 10° and 10610,

In[11, p. 103] an accuracy of 18 using a number of points per polyhedron in the range
from 700 (for hydrogen) to 3000 (for uranium), and exploiting symmetries is reported. Ho
ever, the integrals considered in [11] are three-dimensional while ours are six-dimensic
before the geometric transformation. Results in [12, pp. 95-96] on computing the ovel
integrals (three-dimensional) for a Slater-type function in a convex polyhedron show
error in the range [16, 10~7] for a number of points from 2500 for small molecules with
many symmetries up to 264,000 for large molecules without symmetries.

In [15] precision in the range from 16 to 107° is reported using a grid of integration
points of size equal to or greater than:280 x 50= 50,000 for the integration of three-
dimensiond functions whose analytic closed form is known.

Our preliminary experiments and comparisons with results in [11, 12, 15] indicate tf
our method for six-dimensional integrals can attain performances comparable to thos
competing methods even when applied just to three-dimensional integrals.

1.4. Integral Geometry and Computational Geometry

Our result is obtained by applying to integrals (1) and (2) geometric transformatio
already applied successfully to other problems ranging from radiosity (approximation
form factors [29]), to calculation of electrostatic forces [30] and the boundary eleme
method (entries of the stiffness matrix for systems of conducting bodies [31, 32)).

The first step of the transformation involves transforming integrals (1) and (2) into int
grals over lines in 3-space. The second step consists in choosing a particular form of
differential measure of lines in 3-space so that we can separate our integral into an exte
integral over the set of directions and an internal integral which can be evaluated ana
cally. The new kernel is evaluated using methods from computational geometry. As a re
the initial six-dimensional integral is reduced to a two-dimensional one. Moreover, wh
the original kernelin (1), (2), and (3) is singular, the new kernel is regular everywhere in

2 Such integrals are expressed in spherical coordinates, thus with a linear and two angular parameters.
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domain of integration. Although the general scheme is the same as in the above-ment
results, the transformation depends critically on the exponent of the fawgter p,|, thus
requiring in this paper a new derivation starting from first principles.

1.5. Organization of the Paper

The paper is organized as follows. In Section 2 we give the geometric transformatio
integrals (1) and (2) for any convex compact polyhedron endowed wittifarm charge
density. In Section 3 the result is extended to any distribution of charge polynomia
Cartesian coordinates. In Section 4 we describe the overall algorithm. In Section &
discuss the implementation, experiments, and numerical results.

2. GEOMETRIC TRANSFORMATION: UNIFORM CHARGE DENSITY

In this section we assume that the domBiof interest is a convex and compact bdgly
in three-dimensional space, endowed witinformcharge density. We assume the space
to be vacuous or filled with a homogeneous nonpolarizable medium, and we assume a
coordinate system. The purpose of this section is to use tools from integral geometry
differential calculus in order to rewrite Egs. (1) and (2) in a form convenient for numeri
integration. We begin by considering the electrostatic potential generated by th&laidy
a pointp of the space:

1
V| = —dag. 4
5(p) p/qeam—cn q (4)

The idea is to expresés (p) as a weighted integral over the set of straight lines passi
through p. The weight of each lind is given by the charges lying on, and it can be
expressed in terms of the length of the intersectioh @fith the bodyB.

2.1. Preliminaries

Let us introduce some notation, as well as recall some elements of differential calc
and integral geometry (see, e.g., [33, 34]). The first step is to introduce the set of str
lines in space and define a measure on it. We denote Avitfie set of straight lines in
three-dimensional space. Given a pomt’, is the set of lined. € £ passing througlp.
We will useL for lines in eitherC or L, but to make the expressions clearer we will denot
their differential measures of lines respectively with anddL . A straight line can be
identified in a number of different ways, depending on the coordinates used. To deter:
aline inL e £, we only need to specify a directian so thatL = L (u). For a generic
line L € £, for reasons that will become apparent soon, we specify a direataonrd the
intersectiors betweenL and a plan&, orthogonal tau, so thatl. = L (s, u). Note that this
is just one particular parameterization of lines in the space.

Santab [34] explains how to find a density for subsetsfoivhich is invariant under the
group of rigid motions; moreover, this density is unique up to a constant factor. The der
for straight lines in the space is simply

dL=dsdu

wheredu is the differential measure of directions amglis the surface element on a plane
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S, normal tou. This nice relation justifies our choice of, (1) to determineL. Other
representation of lines produce more complicated expressions.

The directionu corresponds to a point on the surface of a unit sphere. However,
will be convenient to identify antipodal points, so that we will really be working on :
hemisphere denoted wit%'Q whose measure is thus 2If we express the direction in
polar coordinatesé( ¢) then it holdsdu= sing d¢ d6. For the setl, we have simply
dL,=du. Intuitively, this differential element can be seen as a small cone with vertex
extending in both directions from, wheredu equals the solid angle @ The measure of
the entire sefis [dLp= |%Q| = 2. The physical dimension afL is [Length?], while
dL, is adimensional.

Now we relate these differential elements to the element of volligre dx dy dzat the
pointq of a bodyB. In fact this will enable us to rewrite in a more geometric fashion th
classical potential formula. Fix a poipt and letr =|p — q| be the distance betweerand
p; then it holds that

dg=r2drdL,. (5)

This can be obtained by using polar coordinates, wriXiegr siné coseg, y =r sinf sing,
Z=r cos¢, and applying the rules of exterior calculus. It is also easily seen geometrica
becauselq is approximated by a cylinder with basgd L, and heighdr [33].

The other important relation that we need relates the (exterior) product of two differen
volumes to the differential of lines. Lét be the line passing through pointsandq, and
letri (resp.ry) be the distance op (resp.q) from a fixed point of reference oh. The
following holds [34, p. 237]:

dpdg=|r1 —ro/2dL dr, dr,. (6)

2.2. Electrostatic Potential at a Point

We are now ready to find a formula alternative to (4) for the potential field generated
a convex bodyB with uniform charge density. The intuition behind the following theoren
is that we take a differential cone with vertgxand sum up the contributions of all the
charges lying in the cone. We find their total contribution tartg, — r2;,) dL,. Next we
integrate over all the directiorls,. The effect due to a fixed differential charge is countec
exactly once, because there is only one line £, passing through it.

THEOREM1. ForalineLe Ly, leté=|LNB|and m=|L NC|, where C is the convex
hull of B and p. Then the potentiak¥p) generated by B at a point p external to B is

VB(p)zg/ e@m—oydL,, @)
LNB#f
where the integral is over the séi,. If p is inside B the potential at p is

VB(p)=%/ (2 + €2) dL,, 8)

Lp

where?; and ¢, are the lengths of the two segments in which p splits B.
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Proof. Let p be external tdB, and fix a lineL throughp and intersectind3. Clearly
p ¢ L N B. We denote withr i, andrmax the minimum and maximum distance pffrom
the points ofL N B. Now the potential ap is given by the classical formula (4), which in
view of (5) becomes

V():/ / / rdrdLy,
5(P qeB Ip Q| Lec, JgeLnB P

wherer = |p — q|. For a fixed lineL intersectingB, we have[rdr = (r2,, — r2,)/2
because varies between valugg,in andrma If LN B=0 thenj r dr = 0. Consequently
we can integrate on the domdib € £,: L N B # @}, thus obtaining

0
VB(p) =35 / (rrznax m|n) d Lp
2 JinBs

Now the first part of the theorem follows by substituti®yg: r max — r'min @ndm =rpax and
rearranging the formula. This concludes the proof of the first part of the theorem.

Whenp is inside the bodyB, the previous reasoning applies to both directions of a sing
line L, wherermin =0 andrmax=11, |2, respectively. Moreover, all lines ifi, intersectB.
This proves the second part of the theoremn.

Formulas (7) and (8) have the important property of having a regular kernel, while in
classical formulation (4) the kernel may diverge.

2.3. Self-Energy of a Body and Mutual Energy of Two Bodies

Now we apply the result above in order to find the potential energy of a body or sys
of bodies. Intuitively, we will find that for a fixed differential elemeasht. (which can be
imagined as a “fat cone”) the contribution to the total potential energy given by the interac
between charges iBNdL is p¢3dL/6. We will obtain the total energy by integrating all
the differential contributions. The contribution of two fixed particular differential charg
is counted exactly once, since two points define a unique straight line in the space.

THEOREM 2. The potential self-energy g=of a convex body B with uniform charge
densityp is given by

Eg="_ e3dlL, 9)
6 /LB
where Le L is a straight line in the space ardis the length of the intersectionm.B.

Proof. Let us start from the classical expression (1) for the potential energy of a b
B, wherep is constant and we use relation (6),

2
0 1
Eg = — ——dpd
® 2 Joqe IP—d] pda
2
== [p—qldLdridrs,
2 Jp.eB

wherelL is the line passing through andq, andr, r, are the distances gf, g from a
fixed point onL. We can exchange the order of integration, integrating first over thelline:
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intersectingB and then over the pair of points laying &nWe obtain

02

Ee=" (/ |p—q|dpdq>dL.
LNB#Y p,geBNL

It can be easily seen that the inner integral evaluaté3/®, and the theorem followsm

The same result can be obtained starting from the well-known rel&iga: (1/2)
Jp(p)Ve(p) dpand applying formula (8) for the potential at a point.

The valuelz = [¢3dL is a geometric invariant of the objeBt and the theorem we just
proved is the three-dimensional case of a general relation which can be found in [34]. Usi
formula from integral geometry [34, p. 231] we can obtain the bdynd (3/2)V[ B].A[ B]
(whereV[] and A[] denote respectively the volume and the superficial area), and tt
translates directly into a useful bound fieg.

THEOREM3. The potential energy & g, of two convex bodies;BB,, each with uniform
charge densitys, oo, is given by

Eg, BZZM/ g, lg, (2t — g, — €p,) dL,
’ 2 LE[,12

wherelg, =|L N By|, £g,=|L N By|,t =|L N C|, C is the convex hull of Band B, and
L12is the set of lines which intersect both &d B.

Proof. We consider expression (2) and proceed like in the previous theorem. We obit

EBLBZ=P1'02/ (/ |p—q|dpdq>dL.
L1 peBiNL,qeBNL

By means of some calculus we obtain that the inner integral evaluatésdd g, €5, (2t —
¢, — {,) and the theorem followsm

3. GEOMETRIC TRANSFORMATION: NONUNIFORM
DISTRIBUTION OF CHARGES

In this subsection we will extend the theory presented in Section 2 to the case of arbit
distribution of charges. We will obtain formulas involving integrals over the set of straig
lines, where each line is assigned a “weight” which depends on the body under study.

Consider first the electrostatic potential at a pginEor a generic distribution of charge
on B formula (4) becomes

p(d)
V, = —d
B(p) /qulp—Q|

Proceeding like in the proof of Theorem 1 we can rewrite the last expression as

Ve(p) =/ / p(@rdrdL,
LnBx# JgelnB

= / wB,p(L)de,
LNB##
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where we defineag p(L) = j'qeme(q)r dr. The quantitywg p(L) can be thought of as
the “weight” of line L and represents its contribution to the potentiapatue toB. We
already saw thabg (L) can be computed explicitly #(q) is constant. In the general case
we apply a change of coordinates as follows. Consider an orthogonal system of coordi
(X', ¥, Z) which has the origin ap and the axi' parallel toL. We rewrite the density
function in this system of coordinategp) =o (X', Yy, Z). Notice that the coordinates
andy’ are the same for all the points an and we will write simplyo (Z) =0 (X', Y, Z).
The weight of lineL is thus

wB,p(L)z/ o(r)rdr.
gelLnB

Denoting witha (x) an antiderivative of (x), and witha (x) an antiderivative of (), it
is easily seen thaf (x) = o (X)X — o (X) is an antiderivative of (x)x. Finally, let¢; and
£>> £, be thez' coordinates of the extreme points lofy 9 B. We obtain forwg p(L) the
expressions

voo(Ly— | F() —F(t). if pg B;
BP0 ) Fey) + F(g) — 2F(0), if peB.

Consider now the self-energy of a boBy given by expression (1). In the same manne
as before we obtain

1
EB:/ / S (Mp(@Ip—aldpdq dL
LNB#¢Y J p,qeLNB

=/ we(L)dL, (10)
LNBf
where we defined

wB(L)z/ %p(p)p(q)lp—qldpdq
p,geLNB

We can apply the same linear transformation as above to exp(gssin a coordinate
system X', Yy, Z'), whereZ is parallel toL (the origin can be fixed arbitrarily). We denote
the transformed function with (X', y', z) = o (), and definer (x) ando (x) as before. Let
£y and{, > ¢4 be thez' coordinates of the extreme pointslof d B. Then the weight ot
can be written as

17 1
wp (L) =/ éa(rl)ff(rz)lfl—rzldfldl’z
r

1,r2=101

£2 _ _
/ o (1[5 () — 5011 — £2) — 5 ()] dry (11)

1=0

=0 (£2)a(£2) + 0 (1) (£2) — 0 (£1)0 (£2) — 0 (£1)T (£1)

.(2
— (£ (L) (L2 — £1) — / o (x)?dx. (12)
l

It is an easy observation that for constarthis formula giveswg (L) = p?(£> — £1)3/6, as
we obtained in Theorem 2.
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The case of two interacting bodies isin all similar to the one-body case, the only differel
being in the integration limits far; in expression (11).

4. ALGORITHM FOR THE EVALUATION OF THE INTEGRALS
IN POLYHEDRAL DOMAINS

The formulas obtained so far for electrostatic quantities are not in a computable fc
because of the presence of the differerdilal In this subsection we will choose a particular
parameterization of lines that is suitable for computation. We will obtain two-dimensior
integrals with a smooth kernel. Moreover, we will explain how to compute this kernel exac
by analytic integration when the bodies are polyhedral objects and the charge distribu
is polynomial in &, y, z). To keep the discussion clear, we will focus our attention on th
computation ofEg, given by formula (9) or its generalization (10).

As we explained in Subsection 2.1, we choose to represent & lin@-space as a pair
(s, u), whereu € %Q ands € ;. Denote withB, the projection of the bod onto the plane
S, Alline L = (s, u) intersectsB iff s€ B,. So the energy oB in expression (10) can be
written

EB=/ / wB(s,u)dsdu=/ K (u) du, (13)
ueiq JseB, i
where
K(u):/ wg(s, u)ds. (14)
seBy

We integrate numerically over the 5@2 by approximating the integral with a weighted
sum of values of the kerné{ (u) at selected points in the integration domain. The domai
%Q is a suitable domain of integration because a number of results exist on genera
distributions of points on the sphere [35]. In particular we can map the sphere int
rectangular domain using spherical coordinate®]; however, to simplify certain formulas
we choose corodinates, (), wherez= cosf, so that the differential element of directions
becomeslu= sind do d¢ =dz dp.

Next we show that the value &€ (u) for any fixed given value ofi can be computed
exactly via analytic (nonnumerical) integration.

We compute the value df (u) for polyhedral domains and polynomial distributions by
means of the following algorithm. The key observation is that the valuasd¢, in the ex-
pression forwg (L) are piecewise linear and thag (L) is a piecewise-polynomial function.

1. Fix an orthogonal coordinate systert,(y’, Z), where thez' axis is parallel to the
directionu, and &', y') span the plane,; next, orthogonally project the edges of the
polyhedronB over S,.

2. Compute the transformedx’, y', Z') = p(X, Y, z) by means of a change of variables;
if p isapolynomialink, y, z), then als@ is a polynomial inX’, y', Z); thus, itis possible
to compute symbolically | o, and [o2.

3. Compute the partition of the plane induced by the projected edges; to this purpo:
variety of algorithms exist in computational geometry literature [36, 37]. The work require
at this step i90((n + k) logn), wheren is the number of edges andis the number of
intersections between projected edges, using a method of Bentley and Ottman [38].
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4. The global integralKk (u) can be obtained by summing the quantiti€s(u) =
J«swa(s, u)ds, wheref ranges among all the faces of the planar decomposition.

5. For each facé in the planar decomposition, the quantitie@nd{, in (12) are linear
functions ofx’, y’; so their analytic expression can be interpolated from their values at
vertices off.

6. Sincels, £,, ando are polynomials, the functiamg (s, u) is also a polynomial, whose
expression can be computed analytically.

7. Apply Green’s theorem to compute the vakig(u) using only the values abg at
the vertices of facd .

8. Finally, computeK (u) = > ; K (u).

Thevaluesof, ¢, atthe vertices of the planar decomposition can be computed by visit
the graph representing the decomposition. The procedure described above appli& w
is a polyhedron ang is a polynomial; however, it applies also to any another function f
which easy algebraic manipulation is possible. Notice that these two conditions influe
two different aspects of the computationBifs not a polyhedron, but we can compétel,
exactly, we can still computeg (L) and perform numerical integration over the direction
u; on the other hand, i is not easily manipulable, we need numerical integration also
obtain the valuevg(L).

5. RESULTS OF NUMERICAL EXPERIMENTS

In this section we discuss our implementation of the algorithm for the computation of
electrostatic energy of a generic polyhedral object. Then we present numerical experim
for the case of ahomogeneously charged cube and a homogeneously charged parallele
Overall, we tried six different integration methods for the evaluation of the integral (-
and two different implementations of the computation of the kernel (14).

5.1. Setup of Numerical Experiments

We first implemented the algorithm that compuke&u) in C++ language. We used the
C++ class library LEDA (Library of Efficient Data types and Algorithms) [39], available ¢
the internet at the addreBstp: //www.mpi-sb.mpg.de. This library contains a routine
that computes the planar decomposition induced by a set of segments, using the swee
algorithm described in [38].

The numerical experiment consisted in computing expression (10) using different que
ture schemes for integrating over the directions. We tried the following quadrature sche

1. Monte Carlo integration. For this scheme, there exist also theoretical results that r
the behaviour of the error to the geometry of the body [40].

2. Quasi-Monte Carlointegration [41]; FORTRAN routines for generating Halton, Sok
and Faure quasi-random sequences of points were taken fra@otleeted Algorithms from
ACM [42]; this package is also available on the internet from a variety of sites (e.g., at
URL http://www.math.hkbu.edu.hk/qmc). The experiments were done according t
the general framework described in [43];

3. Adaptive multidimensional Gaussian integration; we used routine DO1FCF inthe N
library, which is a collection of Fortran routines maintained by the Numerical Algorithr
Group [44].
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Aswe will seeinthe next subsection, the generic implementation, which relies exclusiv
on standard pieces of software, does not fully exploit the advantages of the new metho
order to obtain better results, we first of all implemented the calculation of the K€ gl
in C language, using algorithms written on purpose rather than general libraries. Althol
not highly optimized, this code runs about 40% faster than the previous one.

Moreover, we used a specialized integration algorithm, which is extensively describe
[32, 31]. This algorithm adaptively decomposes the integration domain into subdomains ¢
which the functiorK (u) is well behaved; then it performs a standard Gaussian quadratt
over each subdomain, summing all the results in the end.

The idea behind the algorithm is that the functikriu) has continuous derivatives in
each region where the projection of the polyhedron &eis combinatorically the same.
While u varies among all the directions, a combinatorial change happens whenever a ve
is projected on the projection of an edge; this corresponds to a certain great circle in
hemisphere of direction%ﬂ, whereK (u) may have discontinuous derivatives.

The algorithm tries all the pairs of vertices and edge&) and identifies the great circle
which corresponds to the directionssuch thatv is projected ont@ in S,. The union of
these great circles decomposes the hemisp%'@r'mto regions in which the projection of
the polyhedron is combinatorically the same. In each such rdgion is well behaved and
the Gaussian quadrature succeeds in obtaining a high convergence rate.

The algorithm with the new integration method (which decomposes the domain and tl
applies Gaussian integration) and the C code for the kétae)l will be denoted with DGQ
(decomposing Gaussian quadrature). Note that, denotingNuvitie number of evaluations
of K (u), the relationN <« time depends on the code usedHofu), while the relatiorN <«
accuracy depends on the integration method.

5.2. Numerical Results

We performed numerical experiments on the computation of the energy of a cube v
unit side length, uniformly charged with density=1. Hummer [26] gives an analytic
formula for computing the potential of the cube at any point. Integrating this formula ov
[0, 1]® with NAG we were able to obtain a very precise reference value for the energy o
unit cube,

E ~ 0.94115632219486 erg (15)

with an estimated error of the order of 0. (See Table Ill to examine the convergence of
this integration.)

For each of the standard rules of integration discussed in the previous subsection
carried out 36 different computations, varying the initial rotation of the cube and the se
for the pseudo-random numbers used in the Monte Carlo algorithm. We then computec
each numbeN of function evaluations the root mean square errokise= (3_; €7 /N)*/2,
whereg; \ is the absolute error of thigth run afterN function evaluations. Note that, being
the value of the integral close to 1, the valugs represent quite well also the relative
error.

The results for the Monte Carlo, quasi Monte Carlo, and NAG integration are sho
in Table I. The results obtained with the DGQ method are in Table Il. There we sh
for exponentially increasing values bf the value—log,,en. This number represents the
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TABLE |
Energy of Uniformly Charged Cube, Standard Methods

N Time Monte Carlo Halton Faure Sobol’ NAG
150 0.82 2.60 2.89 3.03 2.95 2.70
200 1.09 2.72 3.00 3.29 3.09 2.85
300 1.63 2.76 3.27 3.26 3.12 2.92
450 2.43 2.85 3.48 3.54 3.56 3.05
550 2.98 2.91 3.61 3.61 3.59 3.27
750 3.79 2.99 3.60 3.76 3.59 3.42
1050 5.68 3.05 3.87 4.06 3.90 3.62
1450 7.86 3.14 4.14 3.96 3.97 3.67
2050 11.1 3.19 4.06 4.25 4.30 3.76
2950 15.9 3.25 4.25 4.29 4.26 3.84
4100 22.2 3.37 4.26 4.42 4.54 3.86
5800 314 3.39 4.48 4.40 4.47 4.58
8200 44.4 3.48 4.69 4.64 4.82 5.04
11600 62.7 3.60 4.76 4.83 4.73 5.35
16400 88.7 3.63 5.09 5.04 5.05 5.61
23200 125 3.70 4.86 5.01 5.08 5.65
32800 177 3.76 5.44 5.40 5.30 6.16
«=0.53 «=1.02 «=1.00 «=1.03 a=1.69

accuracy of the result, in decimal digits, aftérevaluations oK (u). The same results are
shown graphically in Fig. 1, in bilogarithmic scale.

All the computations were done on a Pentium 1l 200MHz computer. In the tables we
show the time in seconds needed for one run to achieesaluations oK (u). The value
« at the bottom of each column is the convergence rate of the method. It was obtained
least-square fitting of the valueg, Tooking for a behaviour like N~“.

In [40] itis shown that the variance & (u), in the uniform distribution case, is bounded
SO we can expect a convergence rate/@fftom the Monte Carlo method. From the results, i
is clear that Monte Carlo method performs exactly as expected. Quasi Monte Carlo met
are superior and have a convergence rate very close to the one predicted by theory
decreases as I8¢\ /N for two-dimensional integration). The different sequences give
very similar behaviour both in error and convergence rate.

TABLE Il
Energy of Uniformly Charged Cube, DGQ Method

N Time DGQ
256 1.0 34
576 2.3 4.4
1024 4.0 5.7
1600 6.3 7.1
2304 9.1 8.6
3136 12 10.0

4096 16 11.0
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FIG. 1. Energy of the uniformly charged cube.

The results of Monte Carlo methods can be compared to those in Morokoff and Caflisc
work [43]. For a function continuous but not differentiable, defined on a sphere in dime
sion 2, they exhibit convergence rates between 0.5 (M.C.) and 1.00 (Q.M.C.), with
accuracy of 1.6 digit (M.C.) and 2.85-3.22 digits (Q.M.C.) winee- 32768.

The behaviour of the NAG routine is better than that of Monte Carlo method, but t
presence of discontinuities iK (u) is a great obstacle in achieving a high convergenc
rate. Instead, the DGQ method, which prevents discontinuities by subdividing the dom:
achieves an error of 18 in only 16 s. We stress that this method is general and does r
use any property of the cube, so we expect a similar behaviour for any object not stretc
in one direction.

5.3. Exploiting Symmetries

In the integration above we did not take into account the symmetry of the cube wt
integrating over the directions. However, in real applications, exploiting the symmetry
of the objects involved can save a lot of computations. If we do exploit the symme
of the cube, we can restrict integration to only24 of the set%sz (for example, in the
setp € [0, w/4], ze [(2+ tar? ¢)~Y/2, 1]). In this way we limit the integration in a region
where K (u) is well behaved, and we do not waste computations for points which gi
the same value. Although in a similar way, we exploit symmetry better than the DC
method does, automatically. Note, however, that in this setting the DGQ method is
applicable.

We carried out numerical experiments in this setting, using the standard integrat
techniques and the C++ code #d(u). The Monte Carlo method was run with 36 different
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TABLE IlI
Energy of Cube, Exploiting Symmetries

N Monte Carlo Halton Faure Sobol’ NAG f Hummer
150 2.55 3.37 3.37 3.44 6.57 9.56
200 2.62 3.52 3.34 3.50 6.54 9.21
300 2.73 3.81 3.61 3.61 7.87 9.29
400 2.75 3.82 3.85 3.83 7.73 10.03
550 2.87 3.97 3.81 3.98 9.29 10.11
750 2.98 3.97 3.91 3.94 9.63 10.21
1050 3.03 4.10 3.98 4.31 9.75 11.38
1450 3.04 4.29 4.21 4.43 10.15 11.05
2050 3.10 4.67 4.37 4.55 11.08 11.32
2900 3.13 4.67 4.64 4.55 12.34 12.02
4100 3.24 4.95 4.69 4.89 13.65 12.15
5800 3.35 4.97 4.93 4.92 13.03
8200 3.40 5.08 4.94 5.22 13.07
11600 3.49 5.29 5.16 5.19 13.36
16400 3.56 5.22 5.64 5.43 13.84
23200 3.64 5.58 5.58 5.45 14.42

32800 3.78 5.70 5.64 5.62

a=0.56 a=104 a=1.05 a=0.98 a=4.03

seeds for the generator; for QMC methods we used, in each run, the succedgivomis
in the sequence; the NAG routine was run only once, being a completely determin
algorithm.

The results are shown in Table Ill. The times of computation are the same as in Tat
although if we use the C code f&t (u) we could expect a 40% saving. As a reference
the last column shows the accuracy obtained in the same time of computation whe
computed the reference value (15) by 3D adaptive integration of the analytic formule
Hummer.

The analysis shows that the adaptive integrator exploits the new setting, achieving a
high accuracy. An error below 1 is the minimum attained, approximately in 16 s if
we use the C code and even faster than we obtained the reference value. All three
algorithms perform slightly better, in terms of digits of accuracy, but the convergence r
are approximately the same. The Monte Carlo method does not seem to gain from th
of symmetry.

5.4. Another Example: A Parallelepiped

One can notice that for the cube the integrand funcKam) is very well behaved, in
the sense that it does not vary much. In fact, it hol@s<06K (u) < 1 for every directioru.
This is not the case for general polyhedra, especially if they are stretched in one direc

In order to better examine this case, we repeated the same numerical experiments t
a 10x 1 x 1 parallelepiped (with uniform charge density= 1). By adapting the formula
in [26] we obtained a reference value of 28.52126794 erg for its energy. Notice that in
case the quotient between the maximum ad the minimum valigof is 100. Table IV,
Table V, and Fig. 2 show the results, obtained as before by averaging over 36 different
of the algorithm. The errors shown are the relative errors.
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TABLE IV
Energy of Parallelepiped, Standard Methods

N Monte Carlo Halton Faure Sobol’ NAG
150 0.77 1.27 1.07 1.14 1.08
200 0.80 1.31 1.27 1.30 1.44
300 0.80 1.39 1.36 1.45 1.63
450 0.92 1.64 1.61 1.61 1.97
550 0.95 1.56 1.64 1.88 2.22
750 1.10 1.87 1.81 1.83 2.87
1050 1.22 1.95 1.95 2.03 3.07
1450 1.23 2.08 2.09 1.99 3.17
2050 1.32 2.20 2.59 2.65 3.20
2950 1.35 2.50 2.38 2.40 3.55
4100 1.43 2.49 2.47 2.71 3.71
5800 1.48 2.61 2.60 2.77 3.80
8200 1.57 2.83 3.01 3.03 3.82
11600 1.65 3.04 2.76 2.89 3.82
16400 1.76 3.18 3.18 3.17 3.82
23200 1.85 3.20 3.10 3.24 5.49
32800 1.93 3.60 3.51 3.63 6.18
«=0.51 «=0.94 «=0.93 «=0.95 a=2.04

One can see that, as expected, the accuracy is worse than in the case of the cube, €
the asymptotic convergence rates are very similar. Moreover, Monte Carlo and quasi Mc
Carlo methods seem more sensitive to the variatidd @f) than the adaptive integrator. In
any case, the DGQ method is much faster than all the others.

Notice thatin real applications objects stretched as our parallelepiped are rarely preser
one should expect a behaviour somewhere in between the cube and the parallelepiped

TABLE V
Energy of Parallelepiped, DGQ Method

N Time DGQ
256 1.0 2.00
576 2.3 3.08
1024 4.0 3.63
1600 6.3 3.72
2304 9.1 4.03
3136 12 4.41
4096 16 4.82
5184 20 5.23
6400 25 5.66
7744 30 6.08
9216 36 6.51
10816 42 6.91
12544 49 7.29
14400 57 7.70

16384 65 7.80
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FIG. 2. Energy of the parallelepiped.

6. CONCLUSIONS

In this paper we have shown that six-dimensional integrals defining the Coulomb ¢
energy of a charge distribution and the mutual energy of two distributions can be redt
to two-dimensional integrals by using integral geometric transformations. This techniqt
particularly effective for convex polyhedral domains and polynomial distribution of char
since in this case some auxiliary computation can be done exactly. Preliminary tests o
self-energy of the charged cube, for which reliable reference values are available thr
an alternative method, show a ratio of precision versus computational effort comparab
those of other methods in literature aimed at three-dimensional integrals.
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